Dynamic Fine-Grained Scheduling for
Energy-Efficient Main-Memory Queries

Iraklis Psaroudakis** Thomas Kissingerf
Pinar Tézin* Anastasia Ailamaki* Wolfgang Lehnert

Erietta Liarou*

*EPFL
{first.last}@epfl.ch

ABSTRACT

Power and cooling costs are some of the highest costs in data
centers today, which make improvement in energy efficiency
crucial. Enmergy efficiency is also a major design point for
chips that power whole ranges of computing devices. One
important goal in this area is energy proportionality, argu-
ing that the system’s power consumption should be propor-
tional to its performance. Currently, a major trend among
server processors, which stems from the design of chips for
mobile devices, is the inclusion of advanced power manage-
ment techniques, such as dynamic voltage-frequency scaling,
clock gating, and turbo modes.

A lot of recent work on energy efficiency of database man-
agement systems is focused on coarse-grained power man-
agement at the granularity of multiple machines and whole
queries. These techniques, however, cannot efficiently adapt
to the frequently fluctuating behavior of contemporary work-
loads. In this paper, we argue that databases should employ
a fine-grained approach by dynamically scheduling tasks us-
ing precise hardware models. These models can be pro-
duced by calibrating operators under different combinations
of scheduling policies, parallelism, and memory access strate-
gies. The models can be employed at run-time for dynamic
scheduling and power management in order to improve the
overall energy efficiency. We experimentally show that en-
ergy efficiency can be improved by up to 4x for fundamental
memory-intensive database operations, such as scans.

1. INTRODUCTION

Dynamic power costs comprise a major part of overall
costs in modern large scale data centers [7]. As costs of
static power infrastructure decrease, the fraction of dynamic
power costs is expected to increase in the near future, and
companies continuously strive to optimize them. As data
management applications are fundamental data center work-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

DaMoN’14, June 22-27 2014, Snowbird, UT, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2971-2/14/06...$15.00.
http://dx.doi.org/10.1145/2619228.2619229.

fTU Dresden
{first.last}@tu-dresden.de

Danica Porobic* Thomas lischet

iISAP AG
{first.last}@sap.com

loads, energy efficiency of the DBMS in general is crucial
[20]. One of the major goals in this area is to achieve en-
ergy proportionality, that argues that power consumption of
the system should be proportional to its current load.

At first glance, using low-power processor components or
computing nodes, which can be turned on and off depending
on the workload, is an appealing option for energy propor-
tionality. Recent studies, however, show that commercial
DBMS achieve more performance per unit of power when
running on more powerful servers [24]. These findings are
in line with the observations of data center operators and
studies of energy efficiency of data center workloads [10].

Faced with limitations in the manufacturing processes and
the inability to efficiently cool all transistors on a chip [1],
processor vendors are turning towards dynamic management
of processor resources, especially power. Common tech-
niques include turbo mode, a hierarchy of sleep states, and
dynamic voltage and frequency scaling.

In this paper, we experimentally assess the impact of these
power features on the performance and energy consumption
of common memory-intensive database operations such as
scans and aggregations. We build energy efficiency curves
(correlating performance with energy) under various power
configurations, scheduling policies, levels of parallelism, and
memory access patterns. We argue that DBMS can follow a
similar approach to calibrate the energy efficiency of data-
base operations dynamically at run-time to improve energy
efficiency and achieve energy proportionality.

Contributions. Our main contributions are:

e We identify the features of modern processors that can
be used to dynamically adjust power at run-time in or-
der to improve energy efficiency of database workloads.

e We experimentally show that energy efficiency can be
significantly improved (by up to 4x) by tuning proces-
sor power features, thread scheduling, parallelism, and
memory access patterns.

e We outline a promising research direction toward power-
aware DBMS employing calibration, dynamic resource
monitoring, and scheduling to improve energy efficiency.

Paper organization. Section 2 presents power control fea-
tures of modern processors and discusses related work in the
data center community. We survey related work in the data-
base community in Section 3. Section 4 argues for run-time
power-aware scheduling, and describes our methodology for

producing calibration curves for analytical operations. We
show our experimental evaluation in Section 5, which in-
cludes calibration curves with a sensitivity analysis. Finally,
Section 6 concludes the paper and outlines future work.

2. ENERGY EFFICIENCY BACKGROUND

Energy efficiency can be considered from (at least) two
perspectives: small-scale and large-scale. In the large-scale,
i.e., in the context of a data center or a compute cluster,
energy efficiency is very often achieved by elasticity at a
node level. For example, Schall and Hérder [22] demon-
strate energy proportionality by efficiently partitioning and
migrating database fragments. Also, Chen et al. [2] have
identified inefficiencies in running data analytics on Hadoop
and proposed various policies to turn off servers. However,
power cycling decreases endurance of power supplies signifi-
cantly and entails costs for starting up the system in terms
of latency and energy consumption. Thus, a much better
approach is to find more work or to lower the frequency.
Additional work can be found with more precise scheduling
of non-interfering workloads [3].

In the small-scale, processor vendors are turning toward
dynamic power management of processors, because they in-
creasingly face power and scaling limitations. Dynamic Volt-
age and Frequency Scaling (DVFS) is the most popular way
to improve energy efficiency, by using the ACPI P-states to
adjust processor frequencies. Lowering frequencies allows
lowering the voltage, which results in significantly decreased
power consumption. Although frequencies can be defined at
the operating system (OS) level with respect to individual
cores, processor vendors currently only allow adjustments at
a coarser granularity. For example, Intel processors based
on Nehalem and Sandy Bridge architectures keep all cores
on the same processor at the same P-state.

A special form of DVFS that has become popular with
recent processors is turbo mode (marketed as Turbo Boost
by Intel and Turbo Core by AMD). Turbo mode is a special
case of computational sprinting [21]. It boosts frequency and
voltage (frequency sprinting) of a few cores, with a frequency
potentially beyond the nominal one, depending on the power
and thermal budget and the number of idle cores. This
scheme is used primarily to boost the performance of single
threaded workloads and is typically automatically controlled
by the processor. It can, however, be disabled from the user
level applications through OS interfaces, or by lowering the
processor frequency below the maximum.

Another energy efficiency feature of modern processors are
the idle states. The ACPI standard describes C-states that
turn off some processor features to lower the power con-
sumption. Although current processors implement a more
fine-grained hierarchy of C-states compared to the standard,
their use is mostly reserved to the OS scheduler.

3. RELATED WORK

Recent studies in the area of energy efficiency of DBMS
can be divided into three broad categories: (a) analysis of
energy proportionality of clusters, (b) measuring energy ef-
ficiency of operators and analytical queries, and (c) making
query optimizers aware of a query’s energy requirements.

Choosing wimpy or beefy nodes for data center workloads
has been a hot topic in systems communities. In the data-
base community, a number of recent studies with distributed

and analytical workloads have examined different trade-offs
between various types and numbers of nodes in the clus-
ter [12, 13, 14, 22]. The principal motivation is that while
achieving energy proportionality of a single server is hard,
it would be more realistic to achieve it when work is dis-
tributed among multiple nodes. The common conclusion is
that current distributed database designs perform better on
beefy nodes since operators and schedulers are oblivious to
energy requirements. A load balancing subsystem that is
aware of the energy cost for processing different parts of a
query on different nodes and the cost of potentially transfer-
ring data among nodes can make better decisions and come
closer to achieving energy proportionality [22].

On a single server, a number of studies have analyzed en-
ergy efficiency of different system configurations and both
individual operators and TPC-H queries [9, 24, 26]. Their
goal is to find a way to minimize energy costs per unit of
work and the most common approach is to save energy by
lowering processor voltage and frequency at the expense of
query response time [13]. An extensive study [24] of en-
ergy efficiency of database software suggests that for a single
node server system, the most energy-efficient configuration
is the highest performing one. Authors of this study have
performed a range of experiments with varying machine con-
figurations and observed that for the same CPU utilization,
power consumption for different database operators can vary
as much as 60%. In this paper, we go a step further by
analyzing potential power savings with dynamic frequency
scaling and fine-grained power-aware scheduling at run-time
at a granularity of threads and operators in the query plan.

The most natural place to add energy efficiency awareness
to a DBMS is the query optimizer. One recent project aug-
ments the operator performance models in PostgreSQL with
information about the energy cost of processing tuples [26,
27]. By changing the query optimization criteria, the energy
cost of TPC-H queries has been lowered by 19% without sig-
nificantly increasing the query response times.

Another approach for general systems is Dynamic Con-
currency Throttling (DCT) which aims to reduce the num-
ber of active threads during parallel regions, that are con-
strained by shared resources, to reduce energy consumption
[16]. Such general purpose approaches for energy-efficient
scheduling typically focus on a single set of parameters that
is adjusted beforehand or at run-time, using a limited set of
performance metrics. They use data mining tools to gener-
ate a model and select the most appropriate configuration
at run-time. The main problem is that they rely on the pre-
dictability of observed metrics over time to compensate for
the tracing overhead and system reconfiguration. For this
reason, they cannot be used efficiently on DBMS applica-
tions, which might need to handle unpredictable workloads
and manifest multiple behaviors over a short period of time.

A more radical approach to energy efficiency is the spe-
cialization at the hardware level by creating ASIC or FPGA
chips for accelerating common operations [6, 11, 19, 25].
With specialized hardware we can achieve an order of mag-
nitude better efficiency, but at the price of high design costs
and inflexibility. As the era of Dark Silicon [8] looms, we
will not be able to power the whole chip. Having specialized
circuits to use on demand can be very appealing. From the
software side, we propose a similar notion: specializing the
scheduling scope of the DBMS for a fine-grained dynamic
scheduling approach to improve energy efficiency.

4. POWER-AWARE SCHEDULING

Both general purpose and database specific proposals for
improving energy efficiency of DBMS fail to achieve a lot
of potential energy savings. General purpose optimization
tools treat applications as black boxes and optimize them by
measuring specific performance counters externally. DBMS,
however, pose a significant challenge to general purpose ap-
proaches. They are heavily multi-threaded applications whose
memory access behavior changes over time for different data-
base operations and can range from pure independent stream-
ing to high contention. Thus, an approach, that utilizes in-
ternal DBMS knowledge to quickly assess resources, includ-
ing caches, memory controllers, and socket inter-connects,
and enhances energy efficiency using the power features of
modern processors, seems more appropriate.

Database specific approaches, on the other hand, suggest
optimization of large parts of the workload using coarse-
grained changes to the hardware environment. Recent pro-
posals argue for adding power consumption models to the
traditional query optimizer and treating power either as an
additional optimization goal or an optimization constraint
(see Section 3). While this is a step in the right direction,
additional energy savings can be achieved by careful thread
scheduling and memory allocation policies that also tune
processor configuration.

In this paper, we evaluate the potential of dynamic fine-
grained power-aware scheduling of analytical workloads at
run-time using precise hardware models. Our general strat-
egy relies on query plans generated by a power-aware query
optimizer and on a set of energy efficiency models based
on power/performance metrics. These models can be pro-
duced by the DBMS beforehand by calibrating operators
using a combination of parameters including different levels
of parallelism, thread placement policies, and memory access
strategies to improve energy efficiency. To assess the poten-
tial improvements, we produce energy efficiency calibration
curves for fundamental building blocks for analytical queries:
concurrent partitioned scans and a parallel aggregation. In
the rest of this section, we detail our methodology.

Experimental methodology. We conduct two sets of ex-
periments, one for concurrent partitioned scans and one for a
parallel aggregation. Both use common tools for measuring
energy, but have different experimental setups to explore
different aspects of energy efficiency for memory-intensive
operations. Below, we detail the common tools and then
describe the experimental setup for each experiment.

Hardware counters. For both experiments, we use Intel’s
RAPL (Running Average Power Limit) for measuring energy
consumed during the experiments. We use the following two
domains of RAPL counters:

e Package (PKG). This metric includes the energy con-
sumption of the entire package, including the core and
the uncore parts, but excluding the attached DRAM.

e DRAM. This metric includes the energy consumption
of the DRAM attached to a package.

The total energy consumed at the level of a CPU socket is
calculated as the sum of the package and DRAM domains.
In addition, we measure, during the experiments, the used
memory bandwidth (traffic) of the sockets’ DRAM [4].

Concurrent partitioned scans. Section 5.1 evaluates the
energy efficiency of scans with different scheduling policies
and processor frequencies. In our application (written in
C++), each thread continuously scans 128 MB of 64-bit in-
tegers, allocated on the local memory node. Each run lasts
5 seconds and we measure the number of scans performed.
We seek to maximize the following metric:

throughput (scans/sec)
power (W)

The machine used in this experiment is composed of two 8-
core Intel Xeon E5-2690 (Sandy Bridge-EP) 2.9 GHz proces-
sors, with 20 MB last-level cache, and hyper-threading (HT)
enabled. The system has 64 GB of DDR3 RAM. Proces-
sors have different frequencies (or P-states) available, rang-
ing from 1.2 to 2.9 GHz, which we vary. In our experiments,
Auto refers to the configuration where the OS controls the
frequency, plus the dynamic Turbo Boost (which can reach
frequencies up to 3.8 GHz). The P-states also affect the
voltage supplied to the processor’s cores and their energy
consumption when working.

In addition to using RAPL counters that have known lim-
itations [5], we employ dedicated energy instrumentation.
Specifically, we measure the total power consumption on the
AC side of the Power Supply Unit (PSU) using a calibrated
high accuracy power analyzer (ZES Zimmer LMG450). This
device reports 20 samples per second but uses a much higher
internal sampling rate in order to report accurate energy /
average power. To avoid perturbation on the system under
test, we process the measurements on a separate system.
By comparing the high precision measurements to RAPL
counters, we assess their accuracy and determine if there is
additional significant energy consumption to consider.

performance per power =

Parallel aggregation. Section 5.2 demonstrates the en-
ergy efficiency of an aggregation under different parallelism,
scheduling, and memory allocation configurations. We eval-
uate the performance of a variant of STREAM [17], a syn-
thetic benchmark that measures sustainable memory band-
width and computation rate for simple vector kernels.

Our variant builds two arrays b and ¢, and performs the
aggregation: a = > (b(i) + ¢(¢)). Elements are of double
data type. In our experiments, we use 4 GB arrays. Our
benchmark performs the operation 10 times (reducing stan-
dard deviation below 5%) and we measure the total response
time of all iterations (excluding the allocation of the arrays).

Contrary to the previous set of experiments, in this ex-
periment our goal is to decrease both the response time and
energy consumption. We seek to minimize an energy de-
lay product metric [15] that is commonly used in latency
sensitive experiments:

EDP = response time (sec) * energy (J)

Furthermore, STREAM supports the OpenMP API [18]
for parallelism, and we express the operation as:

#pragma omp parallel for reduction(+:a)
for (i=0; i< STREAM_ARRAY_SIZE; i++)
a =a + b[i] + c[il;

The range is partitioned and distributed among the given
number of threads. Thus, we can easily assess the energy
efficiency for different levels of parallelism (i.e., number of
threads) and scheduling policies. Moreover, we measure the

effect of non-uniform memory access (NUMA) latencies on
energy efficiency by varying memory allocation policies.

In this experiment we use the machine composed of two 8-
core Intel Xeon E5-2640 v2 (Ivy Bridge-EP) 2.0 GHz proces-
sors, with a 20 MB last-level cache. The system has 256 GB
of DDR3 RAM. Contrary to the previous experiment, we
disable hyper-threading to minimize interference of threads
running on the same core, which introduces variability.

S. EXPERIMENTAL RESULTS

This section summarizes the results of the experiments for
concurrent partitioned scans and the parallel aggregation.
We present calibration curves and discuss their implications.

5.1 Concurrent partitioned scans

In this experiment, we vary the number of concurrent
threads, the scheduling policy, and the frequencies of the
processors. We measure total throughput, energy consump-
tion, and report the energy efficiency of each configuration.

5.1.1 Socket-fill scheduling

In this policy, we bind threads in a way to first fill socket
1 and then socket 2. We begin by binding threads to every
core of socket 1, then to the HT sibling cores of socket 1,
then to every core of socket 2, and finally to the HT sibling
cores of socket 2. Figure 1 shows the results.

We can draw a number of observations from this experi-
ment, some of which are shared with other scheduling poli-
cies. First, we note that the lines corresponding to measure-
ments with RAPL counters and external equipment follow
the same trends. The difference between the two remains
constant for each frequency, irrespective of the number of
threads used. Since we do not exercise non-processor parts
of the system heavily (e.g., disks or network), the differ-
ence corresponds to the constant power consumed by the
mainboard and other system components. RAPL counters
provide a good approximation for the power consumed by
sockets. For clarity, we do not include further measurements
with external equipment. Thus, energy efficiency refers to
sockets and DRAM instead of the entire system.

Second, we notice that for each frequency, the memory
bandwidth gets saturated after a number of threads on each

4.0

35
£ 30 P gR SR 22202
; . ‘4,0"-0-040-OQ‘,‘.‘_‘,.-:_.'......I-I............n...‘.-.
g 25 Rt _
£ 20 ¥ A
3 e
E” 1.5
© 1.0

. —=—2 . 9GHz AUtO e RAPL

0.0

0 4 8 12 16 20 24 28 32
Threads

Figure 1: Measuring the energy efficiency, with

RAPL counters and external equipment, for the
socket-fill scheduling policy, while varying the num-
ber of threads and the processor frequency.

E 50

=)

s

2 30

<

o 20

2

:FE 10 ——1.2GHz ——2.0GHz

s —=—2 9GHz Auto

:>t° 0

0 4 8 12 16 20 24 28 32

Threads

= 50

2 ——1.2GHz ——2.0GHz

G 40 —=29GH: Auto

s

2 30

<

o 20

2

:Fg 10

L

%D 0 G R N P A S s

0 4 8 12 16 20 24 28 32

Threads

Figure 2: Average memory traffic of Figure 1.

socket. We depict the average memory traffic of the sockets’
DRAM in Figure 2. The saturation point is different for
each frequency, since the maximum memory bandwidth of
the memory controllers depends on the frequency [23]. To
better illustrate the performance bottleneck caused by the
saturation, we depict the throughput and power measure-
ments for the case of 2.0GHz in Figure 3. Throughput flat-
tens around 7 threads due to the memory bandwidth being
saturated. Additional threads do not increase throughput,
but, depending on the frequency, may hurt energy efficiency
since they draw additional power. We notice also that the
hyper-threads do not consume additional power.

A third implication is that, as shown in Figure 3, through-
put is ultimately doubled, but the total power is not, due
to the constant power of the second socket that we con-
sider in the performance per power formula while we fill the

< 600

g

g 400

5

'?n 200 ——2.0GHz

3 O

= 0 4 8 12 16 20 24 28 32
Threads

gp ——S1 —=—S2 == DRAML = DRAM2

3 60

2 20 et e s s s ppranaeen s

-9 O li:2::-4-|~.--~-~w¢4-~---~--c-.' -

0 4 8 12 16 20 24 28 32

Threads

Figure 3: Throughput and RAPL counters break-
down of Figure 1 for the case of 2.0GHz frequency.

first socket. The last implication is that a lower frequency
can achieve the best energy efficiency. The lowest frequency,
1.2GHz, cannot keep up with memory requests, but an inter-
mediate frequency, 2.0 GHz, can keep up with the requests,
while not powering up cores completely.

Overall, when we compare the most energy efficient con-
figuration, i.e., using 23 threads at 2.0Ghz, we get 3.6x
improvement (4.3x when comparing total machine power
consumption) compared to the default OS-managed single-
threaded configuration. It is also 1.4x more efficient than the
most efficient OS-managed configuration (using 22 threads).
Thus, the database can calibrate memory-bound operations
on the specific hardware to calculate the best frequency and
parallelism settings to use.

5.1.2 Socket-fill HT scheduling

This scheduling policy is similar to the socket-fill policy,
with the exception that, before going to the next core, we
bind the next thread to a HT sibling. In Figure 4, we show
the results of this scheduling policy. The main implication
is that hyper-threads can efficiently multiplex their mem-
ory requests with those of their sibling threads for memory-
bound operations, increasing the throughput with negligible
additional power (additional to their sibling threads).

4.0

3.5

3.0 PR e
25 ;"liii
2.0
1.5
1.0
0.5
0.0

®-9.
033“”0
L 3

f" e B D

-'.‘9'
" e

e 1.2GHz -+ 2.0GHz
=2 9GHz Auto

Throughput per Watt

0 4 8 12 16 20 24 28 32
Threads

Figure 4: The socket-fill HT scheduling policy.

5.1.3 Socket-wise scheduling

The socket-wise scheduling policy corresponds to binding
threads in a round-robin manner across the two sockets, first
using all cores of both sockets and then using their HT sib-
lings. The results are shown in Figure 5.

This policy gradually aggregates the memory bandwidth
of both sockets, avoiding the early socket-specific memory
bandwidth bottleneck of the previous policy. In this config-
uration, we saturate the memory bandwidth of both sockets

o 40
-
g gg ‘:‘;Eﬁifﬁ-t:ﬂ '''''''' cdedse e
i i5 "” ‘iiiilll,mmg,li‘l‘
* .
£ 20 e
% 1.5 -
3 1.0 : e 1.2GHz -+ 2.0GHz
,'E 83 -ome 2 9GHz Auto
0 4 8 12 16 20 24 28 32

Threads

Figure 5: The socket-wise scheduling policy.

as early as 12 threads (6 on each socket) at 2.0GHz. Ad-
ditional threads do not increase throughput any more, but
consume more power and decrease energy efficiency.

5.1.4 Socket-wise HT scheduling

This scheduling policy is similar to the previous one, with
the exception that we bind the next thread to a HT sibling
before going to the next core of the other socket. Results
are shown in Figure 6.

4.0
3.5
3.0
2.5
2.0 o
1.5
1.0 'y

e 1.2GHz -+ 2.0GHz

0.5 w2, 9GHz Auto
0.0

Throughput per Watt

0 4 8 12 16 20 24 28 32
Threads

Figure 6: The socket-wise HT scheduling policy.

This scheduling policy is the most energy efficient at around
20 threads for 2.0GHz. After 20 threads, additional threads
do not increase throughput but consume more power and
decrease energy efficiency. This scheduling policy combines
the best characteristics of the previous scheduling policies for
memory-bound operations: it saturates the memory band-
width gradually while using hyperthreads to increase through-
put without significant additional power. The most energy-
efficient configuration improves the best OS-managed single-
threaded and multi-threaded configurations by 4x and 1.3x
respectively, confirming that choosing the best scheduling
policy does not diminish the potential positive impact of
choosing an appropriate frequency.

Summary. Our experiments with parallel scans demon-
strate that a higher frequency does not improve energy ef-
ficiency because of memory bandwidth saturation while a
very low frequency is not energy efficient because it does not
sufficiently saturate the memory bandwidth. Furthermore,
a scheduling policy that distributes threads on both sockets
and utilizes hyperthreads can improve energy efficiency by
maximizing the use of available memory bandwidth without
unnecessary power consumption.

5.2 Parallel aggregation

In this experiment, we vary three parameters: the num-
ber of threads used for the parallel version of our variant
of the STREAM benchmark, the scheduling policy, and the
memory allocation policy. Since we disable hyper-threading
to minimize the interference of threads running on the same
core, we use the socket-fill and socket-wise scheduling poli-
cies of Section 5.1 without HT. With respect to memory allo-
cations, we assume that the data is already loaded in mem-
ory before the aggregation query arrives. It is, therefore,
expensive for the aggregation to move the data. Under this
assumption, we either allocate memory on the first socket
(similar implications can be drawn if we allocate on the sec-
ond socket), or interleave it across both sockets. We note
that further memory allocation policies can be applicable
for intermediate results, e.g., partitioning (the aggregation

100 5 —=—Socket-fill 100 —=—Socket-fill
1 —Socket-wise] ——Socket-wise
g 10 % 10 ;
x]]
g | 4
a1 1+
w q]
0.1 e —— O N R T A R
0 4 8 12 16 0 4 8 12 16

Threads # Threads

Figure 7: Energy delay product for both scheduling
strategies, when the memory is allocated on the first
socket (left) and when it is interleaved (right).

can then parallelize with locally-allocated partitions, with
implications similar to Section 5.1), as the DBMS needs to
place the intermediate results in memory.

The energy efficiency of all combinations of the parame-
ters is shown in Figure 7. We also include detailed measure-
ments (response time, average memory traffic, and energy
consumption) for the best scheduling policies for each mem-
ory policy in Figure 8 (socket-fill scheduling when the mem-
ory is allocated on the first socket and socket-wise scheduling
when the memory is interleaved).

We first discuss the case when the memory is allocated
on the first socket. A first implication is that parallelism
improves the energy efficiency of aggregations up to a point.
The best combination of parameters that minimizes the EDP
is achieved at around 9 threads, for the socket-fill scheduling
policy. At this point, the memory bandwidth of the mem-
ory controller of the first socket is saturated (see Figure 8).
Employing more threads just consumes more energy without
improving response time, since we are limited by the mem-
ory bandwidth. Thus EDP increases with more threads.

The second case of memory allocation, i.e., interleaving,
ultimately achieves better energy efficiency than the case
of only allocating memory on the first socket. This is de-
spite around half of the total memory accesses being remote,
suffering a higher latency in NUMA architectures, and in-
volving communication between the two sockets. At the
same time, we are not constrained by the maximum mem-
ory bandwidth of the first socket, but can utilize the memory
bandwidth of both sockets, as shown in the average memory
traffic of Figure 8. Interleaving results in balanced use of
resources of both sockets as shown by the energy and mem-
ory traffic graphs. We also note that socket-wise scheduling
is better than socket-fill, because it balances threads across
sockets. Specifically, the socket-wise policy avoids saturating
the resources of a single socket, while the socket-fill strategy
increases EDP around 8 threads when it fills the first socket.

Summary. The parallel aggregation experiments show that
the most energy-efficient configuration involves a memory
allocation policy that can utilize the memory bandwidth of
all sockets and a scheduling policy that balances the threads
across the sockets. In our experiments, interleaving memory
and using the socket-wise scheduling can decrease the worst
EDP (single-threaded execution) by an order of magnitude,
which shows a significant improvement for energy efficiency.

Memory on first socket
and socket-fill scheduling

Memory interleaved
and socket-wise scheduling

_ 16 - —aTime] 12 16 - e Time [12
g 14 1 ——Energy - 1014 ——Energy - 10
212 - F 12 : ?‘:
E 10 % 10 - -
@ 8- -6 8-+ 6 =
€ 6 6 . 8
g X o
o 4 4 4 E -
€ 5 | F2 2 F2
0 +r-rmrrmrrr0 0 4+—rrrrrrrr——r 0
0 4 8 12 16 0 4 8 12 16
Threads # Threads
50 50 -
- 40 - 40 -
S~
8 i
<30 - 30 -
S |
€20 - 20 -
wb |
210 | —=-DRAM1 ;o | —=—DRAM1
——DRAM2 ——DRAM2
0 | +00tto0gtootooe . (O R
0 4 8 12 16 0 4 8 12 16
Threads # Threads
40 —=—pKG1 40 —=—PKG1
1 ——PKG2 1 ——PKG2
3 ~a- DRAM2
ki
220 20 ¢
5 :
S 3
10 N\ 10 -
P < =00 el
0 4 8 12 16 0 16

4 8 12
Threads # Threads

Figure 8: Detailed measurements for the best sched-
uling policy of each memory allocation policy.

6. CONCLUSIONS AND FUTURE WORK

Energy efficiency is currently a major issue for hardware
vendors, data center operations, and application designers.
One of the major goals in this area is the energy proportion-
ality, which argues that power consumption of the system
should be proportional to its current level of performance.
In the area of DBMS, a lot of recent work for energy effi-
ciency is focused on coarse-grained power management on
the level of multiple machines and whole queries.

In this paper, we argue that DBMS can achieve better en-
ergy efficiency through fine-grained scheduling at run-time
using precise hardware models. To avoid the overhead of on-
the-fly data mining, DBMS should calibrate operators be-
forehand using different parameters for scheduling policies,
parallelism, and memory access strategies. These models
can be used at run-time for dynamic scheduling of multiple
queries and power management. Our experimental results
suggest that this direction is highly promising: we show that
calibration curves of basic analytical operations can improve
energy efficiency by up to 4x.

Future work. We intend to use our calibration curves for a
power-aware query optimizer, dynamically adjusting power
management features, and scheduling multiple queries at
run-time. Our approach includes ideas such as: (a) sleep on
block, whenever there is a single-threaded pipeline blocker
operator (e.g., sort), we can get other cores to sleep and let
the worker core go into turbo mode, (b) frequency adjust-
ment, if we have a group of memory-intensive threads on
the same socket, we can lower the frequency of the socket,
and (c) socket power cycling, if a whole socket, including the
content of its caches, is not needed for a period of time, we
can save power by putting it in deep sleep, which flushes
the caches. Ultimately, we intend to combine our calibra-
tion curves with dynamic thread scheduling, data placement,
and power adjustment techniques to achieve energy propor-
tionality. We will also extend our analysis to include the
power consumption of other system components (e.g., main-
board, fans, etc.) to reveal the energy efficiency of the entire
system in addition to sockets and DRAM. The fine-grained
approach to energy efficiency will be even more important
for future processors and memories that will face more con-
strained power budgets.

Acknowledgements

Supported in part by the German Research Foundation (DFG)

in the Collaborative Research Center 912 “Highly Adaptive
Energy-Efficient Computing” and by the Swiss National Sci-
ence Foundation (Grant No. 200021-146407/1).

7. REFERENCES

[1] B. M. Beckmann and D. A. Wood. Managing wire
delay in large chip-multiprocessor caches. In MICRO,
pages 319-330, 2004.

[2] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz.
Energy efficiency for large-scale mapreduce workloads
with significant interactive analysis. In Furosys, pages
43-56, 2012.

[3] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-efficient and QoS-aware Cluster
Management. In ASPLOS, pages 127-144, 2014.

[4] R. Dementiev, T. Willhalm, O. Bruggeman, P. Fay,
P. Ungerer, A. Ott, P. Lu, J. Harris, P. Kerly, and
P. Konsor. Intel performance counter monitor 2.0,
2012. http://www.intel.com/software/pcm.

[5] D. Hackenberg, T. Ilsche, R. Schone, D. Molka,

M. Schmidt, and W. E. Nagel. Power measurement
techniques on standard compute nodes: A quantitative
comparison. In ISPASS, pages 194-204, 2013.

[6] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,

A. Solomatnikov, B. C. Lee, S. Richardson,

C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
ISCA, 2010.

[7] J. R. Hamilton. Internet-Scale Datacenter Economics:
Where the Costs And Opportunities Lie. In HPTS,
2011.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward dark silicon in servers. I[EEE
Micro, 31(4):6-15, 2011.

[9] S. Harizopoulos, J. Meza, M. A. Shah, and
P. Ranganathan. Energy efficiency: The new holy grail

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

(24]

[25]

[26]

27]

of data management systems research. In CIDR, 2009.
U. Holzle. Brawny cores still beat wimpy cores, most
of the time. IEEE Micro, 30(4), 2010.

O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim,
and P. Ranganathan. Meet the Walkers: Accelerating
Index Traversals for In-memory Databases. In
MICRO, pages 468-479, 2013.

W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah,
and D. Tsirogiannis. Towards energy-efficient database
cluster design. PVLDB, 5(11):1684-1695, 2012.

W. Lang, R. Kandhan, and J. M. Patel. Rethinking
query processing for energy efficiency: Slowing down
to win the race. IEEE DEBull, 34(1):12-23, 2011.

W. Lang, J. M. Patel, and S. Shankar. Wimpy node
clusters: what about non-wimpy workloads? In
DaMoN, pages 47-55, 2010.

J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu,

K. Ferreira, J. Vandyke, and C. Vaughan. Energy
delay product. In Energy-Efficient High Performance
Computing, pages 51-55. 2013.

D. Li, B. R. de Supinski, M. Schulz, D. S.
Nikolopoulos, and K. W. Cameron. Strategies for
energy-efficient resource management of hybrid
programming models. IEEE TPDS, 24(1):144-157,
2013.

J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
CS TCCA Newsletter, pages 19-25, Dec. 1995.
OpenMP Architecture Review Board. OpenMP
application program interface version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.
Oracle Labs. Project RAPID. Available at
https://labs.oracle.com.

M. Poess and R. O. Nambiar. Energy cost, the key
challenge of today’s data centers: A power
consumption analysis of TPC-C results. PVLDB,
1(2):1229-1240, 2008.

A. Raghavan, L. Emurian, L. Shao,

M. Papaefthymiou, K. P. Pipe, T. F. Wenisch, and
M. M. Martin. Computational sprinting on a
hardware/software testbed. In ASPLOS, pages
155-166, 2013.

D. Schall and T. Hérder. Energy-proportional query
execution using a cluster of wimpy nodes. In DaMoN,
pages 47-55, 2013.

R. Schone, D. Hackenberg, and D. Molka. Memory
performance at reduced CPU clock speeds: an analysis
of current x86_64 processors. In HotPower, 2012.

D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In SIGMOD, 2010.

L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and

K. A. Ross. Q100: The Architecture and Design of a
Database Processing Unit. In ASPLOS, pages
255268, 2014.

Z. Xu, Y.-C. Tu, and X. Wang. Exploring
power-performance tradeoffs in database systems. In
ICDE, pages 485—496, 2010.

Z. Xu, Y.-C. Tu, and X. Wang. Pet: reducing
database energy cost via query optimization. PVLDB,
5(12):1954-1957, 2012.

