OLTP on Hardware Islands

Danica Porobic, Ippokratis Pandis*, Miguel Branco, Pınar Tözün, Anastasia Ailamaki

Data-Intensive Application and Systems Lab, EPFL
*IBM Research - Almaden

Topology	Core to core latency
SMP	high (~100ns)

Topology	Core to core latency
SMP	high (~100ns)
CMP	low (~10ns)

Topology	Core to core latency
SMP	high (~100ns)
CMP	low (~10ns)
SMP of CMP	<i>variable</i> (10-100ns)

Variable latencies affect performance & predictability

Deploying OLTP on Hardware Islands

HW + Workload -> Optimal OLTP configuration

Outline

- Introduction
- Hardware Islands
- OLTP on Hardware Islands
- Conclusions and future work

Multisocket multicores

Communication latency varies significantly

(PAL

Placement of application threads
Counter microbenchmark TPC-C Payment

Islands-aware placement matters

Impact of sharing data among threads

Fewer sharers lead to higher performance

Outline

- Introduction
- Hardware Islands
- OLTP on Hardware Islands
 - Experimental setup
 - Read-only workloads
 - Update workloads
 - Impact of skew
- Conclusions and future work

Experimental setup

- Shore-MT
 - Top-of-the-line open source storage manager
 - Enabled shared-nothing capability
- Multisocket servers
 - 4-socket, 6-core Intel Xeon E7530, 64GB RAM
 - 8-socket, 10-core Intel Xeon E7-L8867, 192GB RAM
- Disabled hyper-threading
- OS: Red Hat Enterprise Linux 6.2, kernel 2.6.32
- Profiler: Intel VTune Amplifier XE 2011
- Workloads: TPC-C, microbenchmarks

Microbenchmark workload

- Singlesite version
 - Probe/update N rows from the local partition

- Multisite version
 - Probe/update 1 row from the local partition
 - Probe/update N-1 rows uniformly from any partition
 - Partitions may reside on the same instance

• Input size: 10 000 rows/core

Software System Configurations

1 Island
Shared-everything

24 Islands
Shared-nothing

4 Islands

(Pfl

Increasing % of multisite xcts: reads

Finer grained configurations are more sensitive to distributed transactions

Where are the bottlenecks? Read case

Communication overhead dominates

Increasing size of multisite xct: read case

Communication costs rise until all instances are involved in every transaction

Increasing % of multisite xcts: updates

Distributed update transactions are more expensive

Where are the bottlenecks? Update case

Communication overhead dominates

Increasing size of multisite xct: update case

Shared everything exposes constructive interference

Effects of skewed input

4 Islands effectively balance skew and contention

OLTP systems on Hardware Islands

- Shared-everything: stable, but non-optimal
- Shared-nothing: fast, but sensitive to workload
- OLTP Islands: a robust, middle-ground
 - Runs on close cores
 - Small instances limits contention between threads
 - Few instances simplify partitioning
- Future work:
 - Automatically choose and setup optimal configuration
 - Dynamically adjust to workload changes

Thank you!